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Abstract
A time-convolutionless master equation is established for describing the transport properties of
amide-I vibrons coupled with acoustic phonons in a lattice of H-bonded peptide units. Within
the non-adiabatic weak coupling limit, it is shown that the vibron dynamics strongly depends on
the nature of the phonons and two distinct mechanisms have been identified. Harmonic
phonons, which support spatial correlations over an infinite length scale, induce a fast
dephasing–rephasing mechanism in the short time limit. Consequently, the vibron keeps its
wavelike nature and a coherent vibrational energy flow takes place whatever the temperature.
By contrast, anharmonic phonons carry spatial correlations over a finite length scale, only.
As a result, the rephasing process no longer compensates the dephasing mechanism so that
dephasing-limited band motion occurs. It gives rise to the incoherent diffusion of the vibron
characterized by a diffusion coefficient whose temperature dependence scales as 1/T α. In the
weak anharmonicity limit, the exponent α is about 2. It becomes smaller than unity in the
strong anharmonicity limit, indicating that the diffusion coefficient behaves as a slowly
decaying function of the temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a recent series of papers, a small polaron approach has
been used to describe how narrow band excitons may promote
vibrational energy flow in a lattice of H-bonded peptide
units [1–5]. These works were based on the seminal model
introduced by Davydov and Kisluka [6], and later by Scott [7],
to describe bioenergy transport in α-helices in terms of a
soliton mechanism. The main idea is that the energy is
transferred by amide-I vibrations (C=O stretching modes)
which delocalize due to dipole–dipole coupling and give rise
to vibrational excitons called vibrons. Since each C=O group
is engaged in an H bond, the vibrons interact with the phonons
describing the H-bond network dynamics. By assuming that
the phonons behave in a classical way, the strong vibron–
phonon coupling is responsible for a nonlinear dynamics which

counterbalances the dispersion created by the dipole–dipole
interaction. Therefore a vibron propagates according to the so-
called Davydov soliton which provides an approximation to the
self-trapping phenomena. Soliton mechanisms for bioenergy
transfer in proteins have received increasing attention during
the last three decades and a broad review can be found
in [8–10].

Nevertheless, it has been suggested that the solution
to the Davydov problem is rather a small polaron than a
soliton [11–16]. Indeed, in a lattice of H-bonded peptide
units, the vibron bandwidth is smaller than the phonon cutoff
frequency. The non-adiabatic limit is reached so that the
quantum nature of the phonons plays a crucial role. During its
propagation, a vibron is dressed by a virtual cloud of phonons
that corresponds to a contraction of the H bonds surrounding
the excited site. The dressed vibron forms a small polaron.
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From a theoretical point of view, a fully or partially
dressed vibron basis is obtained by performing a modified
Lang–Firsov (MLF) transformation [17]. It is defined
in terms of temperature-dependent variational parameters
whose optimization is achieved by using thermodynamic
arguments [16, 18]. From the estimated value of the
coupling strength (the so-called χ parameter) [8–10], partially
dressed vibrons are expected to occur at low temperatures
whereas fully dressed vibrons must take place at biological
temperatures. However, MLF is not exact due to the
delocalized nature of the vibrons and a polaron–phonon
coupling remains. It is responsible for relaxation and gives rise
to the incoherent diffusive motion of the small polarons (see,
for instance, [2, 19–22]).

Although the small polaron formalism provides a powerful
tool to describe energy flow in proteins, its usefulness, when
compared with other methods, requires first the vibron–phonon
coupling to be stronger than the vibron bandwidth and, second,
the acoustic phonons to be harmonic. However, the physical
relevance of these two conditions is clearly questionable in
realistic systems.

Indeed, most of the works devoted to the Davydov
problem involve χ values extracted from an indirect and
uncertain comparison between experimental and theoretical
results. However, estimations of the coupling strength have
been carried out by performing ab initio calculations for
the formamide dimer, i.e. the smallest model of an α-helix
fragment containing two H-bonded peptide units [23–25]. It
has been shown that most ab initio estimates yield smaller
χ values, often negative, when compared with the usually
admitted χ values. Indeed, in its pioneering calculations,
Kuprievich found a χ value equal to −33 and −17 pN,
respectively, depending on whether the anharmonicity of the
amide-I mode is considered or not [23]. More recently, Pierce
has shown that χ is either equal to −7 or +26 pN, depending
on the geometry of the dimer [24]. Finally, when the two
molecules were forced into a geometry that approximates two
H-bonded peptide units in an α-helix, Ostergard obtained
rather weak χ values of about −7.55 pN [25].

Moreover, especially at biological temperatures, the
peptide units are expected to develop large amplitude motions
so that they may be able to explore regions located more or less
far from their equilibrium position. Since the H bond is usually
considered as a relatively weak interaction, we expect the
peptide units to be rather sensitive to the anharmonicity of the
potential energy. Consequently, the harmonic approximation
certainly fails in describing the H-bond dynamics. The acoustic
phonons have a finite lifetime and their extended nature
disappears [26–29].

In the present paper, the vibrational energy flow in a lattice
of H-bonded peptide units is revisited within the non-adiabatic
weak coupling limit. The phonons are assumed to form a
thermal bath and special attention is paid to characterize the
influence of their anharmonicity on the vibron dynamics. It
will be shown that, for harmonic phonons, spatial correlations
over an infinite length scale occur in the bath. They prevent
dephasing so that the vibron delocalizes coherently along the
lattice in spite of its coupling with the phonons. By contrast,

anharmonic phonons carry spatial correlations over a finite
length scale. Consequently, a transition between a coherent
(wavelike) motion in the short time limit and an incoherent
(diffusion-like) motion in the long time limit takes place. To
study these features, a bare vibron basis is used and a standard
perturbation theory is applied. A generalized master equation
(GME) for the vibron reduced density matrix (RDM) is
established by using the so-called time-convolutionless (TCL)
approach. It allows a systematic analysis of non-Markovian
effects and it gives a better approximation to the exact solution
than standard methods [30–35].

This paper is organized as follows. In section 2, a
modified Davydov model is first introduced to account for the
anharmonic nature of the phonons. Then, the weak coupling
limit is discussed and the key observables required to study the
transport properties are introduced. In section 3, the GME for
the vibron RDM is established and the vibron time-dependent
diffusion coefficient is defined. The diffusion coefficient is
evaluated numerically in section 4 where a detailed analysis
of the energy transfer is performed. Finally, these results are
interpreted in section 5.

2. Description of the system

2.1. Model Hamiltonian

In a 1D lattice of H-bonded peptide units, each site x =
1, . . . , N contains an amide-I mode with frequency ω0.
Restricting our attention to the one-vibron dynamics, the x th
amide-I mode is equivalent to a two-level system whose first
excited state is denoted |x〉. The zero-vibron state, defined as
the vacuum state |�〉, describes all the amide-I modes in their
ground state. The vibron Hamiltonian is thus written as (in
units h̄ = 1)

Hv =
∑

x

ω0|x〉〈x | + �[|x + 1〉〈x | + |x〉〈x + 1|] (1)

where � is the vibron hopping constant. This Hamiltonian
describes narrow band excitons which delocalize along the
lattice according to plane waves with wavevector K and
eigenfrequency ωK = ω0 + 2� cos(K ). This propagation is
accounted by the free propagator G(t) = exp(−iHvt), whose
matrix elements are defined in terms of the Bessel function of
the first kind Jn(z) as

Gxx′ (t) = (−i)(x−x′)e−iω0t Jx−x′ (2�t). (2)

The vibrons interact with the external motions of the
peptide units which result from the collective dynamics of
the H-bond network. The x th peptide unit, with mass M ,
performs a small displacement ux around its equilibrium
position. It interacts with its two neighboring units via
pairwise intermolecular potentials. By expanding these
potentials around equilibrium to third order with respect
to displacements, the H-bond dynamics is governed by the
Hamiltonian Hp defined as

Hp =
∑

x

p2
x

2M
+ W

2
(ux+1 − ux)

2 − δ

6
(ux+1 − ux)

3 (3)

2
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where px is the momentum connected to ux and where W and
δ denote the quadratic and the cubic H-bond force constants,
respectively.

In the present approach, the H-bond anharmonicity is
assumed to be sufficiently small so that a standard perturbation
theory can be applied. Therefore, only the cubic anharmonicity
is considered although high-order contributions may be
included in a straightforward way. In that case, the harmonic
part of Hp defines standard phonons which correspond to a set
of N low frequency acoustic modes labeled by the wavevector
q and described by the boson operators a†

q and aq . The
harmonic frequency of the qth phonon is defined as �q =
�c sin(q/2), where �c = √

4W/M is the phonon cutoff
frequency. Consequently, the H-bond network Hamiltonian
can be rewritten as Hp = ∑

q �qa†
qaq + V , where the phonon–

phonon interaction V is easily expressed in terms of the phonon
operators [29].

According to the potential deformation model, the vibron–
phonon interaction results from a random modulation of the
internal frequency of each amide-I mode by the peptide unit
motions as

�H =
∑

xq

(�qx a†
q + �∗

qx aq)|x〉〈x | (4)

where �qx = −i�0 sin(q)/
√| sin(q/2)|e−iqx/

√
N involves

the χ parameter introduced by Davydov as �0 =
χ(h̄2 MW )−1/4 (h̄ has been reintroduced to avoid confusion).

Finally, the vibron–phonon dynamics is governed by the
full Hamiltonian H = Hv + Hp + �H which will be used
to study the vibron transport properties. This Hamiltonian
slightly differs from the original Davydov model in which the
harmonic approximation has been invoked to define the phonon
Hamiltonian. In the present approach, as shown in the last
term in the right-hand side of equation (3), the phonons no
longer represent independent excitations due to the anharmonic
nature of the potential that links two neighboring peptide
units. Moreover, in a marked contrast with previous works,
we shall assume that the vibron–phonon coupling represents a
small perturbation. The validity of this approximation is thus
discussed in section 2.2.

2.2. Validity of the weak coupling limit

The vibron dynamics originates from the competition between
the hopping constant, which measures the ability of the vibron
to delocalize coherently, and the vibron–phonon interaction,
which favors a diffusion-like motion. To estimate the relevance
of these two mechanisms, let us suppose that the system is
initially prepared in the state |x, {nq}〉. It describes the x th
amide-I mode in its first excited state whereas the lattice is in a
well-defined number state involving nq phonons in each mode
q .

On the one hand, the coupling �H (4) leading to
fluctuations in the phonon numbers, |x, {nq}〉, decays into the
energy continuum formed by the phonon bath. It thus acquires
a finite width whose value is given by the corresponding decay
rate 2	. By assuming the phonons are harmonic and in thermal
equilibrium at temperature T , a second-order perturbation

theory yields 	 = 8EBkBT/�c (kB is the Boltzmann constant)
where EB = 2�2

0/�c is the small polaron binding energy.
On the other hand, due to dipole–dipole coupling, |x, {nq}〉
interacts with neighboring states |x ± 1, {nq}〉. This gives rise
to a band around ω0 whose width is equal to 4�.

Consequently, the weak coupling limit will be reached if
the width of each local state 2	 is smaller than the vibron
bandwidth 4�. By using typical values for the parameters
defining the Davydov model, i.e. � = 7.8 cm−1, W =
15 N m−1 and M = 1.8 × 10−25 kg, this condition is satisfied
at biological temperatures (T = 310 K) provided that |χ | <

16.16 pN (i.e. EB < 0.87 cm−1). Therefore, the small |χ |
values calculated by Pierce and Ostergard [24, 25] clearly
suggest that the dipole–dipole coupling predominates over the
vibron–phonon interaction, even at biological temperatures. It
is thus natural to address the vibron transport properties by
using a bare vibron basis rather than a dressed vibron basis,
as illustrated in the following sections.

2.3. Transport properties

Without any perturbation, the lattice of H-bonded peptide units
is in thermal equilibrium at temperature T at least equal to the
biological temperature. Since ω0 ≈ 1660 cm−1, each amide-
I mode lies in its ground state. This is no longer the case
for the phonons (�c ≈ 100 cm−1) whose eigenstates are not
well defined. A statistical average is thus required by using
the Boltzmann distribution ρp for the phonon density matrix.
Therefore, to study the vibrational energy flow we assume
that the lattice reaches a configuration out of equilibrium. We
suppose that a vibron is created on the site x0 = 0 so that the
initial density matrix is ρ = ρv⊗ρp, where ρv = |x0〉〈x0|. Note
that such an excitation may result from the energy released by
the hydrolysis of ATP [6] or from charge neutralization upon
electron capture by a protonated α-helix [1].

To characterize the vibrational energy flow, let the vibron
density P(x, t) define the average vibron number on the x th
site at time t as

P(x, t) = Tr[ρeiH t |x〉〈x |e−iH t ]. (5)

In principle, the knowledge of P(x, t) yields all the required
observables to describe the energy redistribution. Among the
different observables, we shall focus our attention on the time-
dependent diffusion coefficient defined in terms of the vibron
mean square displacement as

D(t) = 1

2

(
d〈x2(t)〉

dt

)
. (6)

The time evolution of D(t) gives fundamental information
on the vibron dynamics. Indeed, a linear dependence of
D(t) with respect to time indicates a coherent energy transfer
resulting from a wavelike motion of the vibron. By contrast,
D(t) becomes time-independent when an incoherent diffusive
regime takes place and it vanishes when energy localization
occurs.

At this step, a complete characterization of the diffusion
coefficient required the knowledge of a more general object,
namely the vibron RDM σ(t), defined as

σ(x1, x2, t) = Tr[ρeiH t |x2〉〈x1|e−iH t]. (7)

3
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The RDM describes the vibron state at time t after performing
an average over the phonon bath. Diagonal elements yield
the vibron density whereas non-diagonal elements measure the
coherence between local states. Under the influence of H ,
diagonal and non-diagonal elements mix in a complex manner
so that the time evolution of the full RDM must be studied to
extract the information that is desired.

3. Time-convolutionless GME and diffusion
coefficient

3.1. Time-convolutionless GME

To determine the GME for the vibron RDM, we use the
standard projector method of the TCL approach [30–35] which
has been successfully applied to characterize small polaron
dynamics in α-helices [1–3]. Therefore, by performing a
second-order expansion with respect to �H , the GME is
expressed as

iσ̇ (x1, x2, t) = �
∑

s=±1

[σ(x1 + s, x2, t) − σ(x1, x2 + s, t)]

− i
∑

x̄1,x̄2

J (x1, x2, x̄1, x̄2, t)σ (x̄1, x̄2, t). (8)

The first term in the right-hand side of equation (8) describes
the coherent dynamics under the influence of the vibron
Liouvillian Lv = [Hv, . . .]. By contrast, the influence of the
bath is characterized by the relaxation operator J (t) whose
matrix elements are written as

J (x1, x2, x̄1, x̄2, t) = [	x1 x̄1 (t) − Wx1 x̄1,x2 (t)]δx2,x̄2

+ [	∗
x2 x̄2

(t) − W ∗
x2 x̄2,x1

(t)]δx1,x̄1 . (9)

In equation (9), 	(t) and W (t) involve both the vibron–phonon
coupling correlation function Cx1,x2 (τ ) = 〈�Hx1 x1 (τ )�Hx2x2

(0)〉 and the free vibron propagator (2) as

	x1 x̄1 (t) =
∑

x

∫ t

0
dτ Cx1,x(τ )Gx1,x(τ )G∗

x̄1,x(τ )

Wx1 x̄1,x2 (t) =
∑

x

∫ t

0
dτ Cx2,x(τ )Gx1,x(τ )G∗

x̄1,x
(τ ).

(10)

Note that the operators occurring in Cx1,x2 (τ ) depend on the
phonon degrees of freedom only. Their time dependence
results from a Heisenberg representation with respect to Hp

and the symbol 〈· · ·〉 denotes an average over the phonon bath.
The GME is isomorphic to the Schrödinger equation for

a single particle moving on a 2D lattice [2]. This lattice
is a graphical representation of the Liouville space in which
the site position is defined by the two indexes (x1, x2). The
RDM plays the role of a wavefunction whose dynamics is
governed by the time-dependent effective Liouvillian Lv −
iJ (t). Within this equivalence, Lv gives rise to an anisotropic
dynamics which is translationally invariant along the directions
x1 and x2. However, a symmetry breaking is induced by J (t)
which accounts for the dephasing mechanism and describes
both coherence decays and coherence transfers. Note that
the vibron–phonon coupling (4) does not affect the vibron
hopping constant. Incoherent hops between neighboring sites

are forbidden to second order so that J (x, x, x̄1, x̄2, t) =
0,∀x .

Nevertheless, both Gx1,x2 (t) and Cx1,x2 (t) depend on
the distance |x1 − x2| (see the appendix). Therefore
J (x1, x2, x̄1, x̄2, t) is a function of x1 −x2, x̄1 − x̄2, x̄2 −x2 and
x̄1 − x1 only. The 2D Liouville space remains translationally
invariant along the direction x1 = x2. Consequently,
σ(x1, x2, t) only depends on x1 and r = x2 − x1 and it can
be expanded as a Bloch wave as [2, 36]

σ(x1, x1 + r, t) = 1

N ir
∑

k

k(r, t)e−ik(x1+r/2). (11)

The momentum k, which takes N values in the first Brillouin
zone of the lattice, describes the RDM delocalization along the
direction x1 = x2. Since k is a good quantum number, the
effective Liouvillian is block diagonal and the GME can be
solved for each k value as

i̇k(r, t) = �k

∑

s=±1

k(r + s, t)

− i
∑

r̄

Jk(r, r̄ , t)k(r̄ , t) (12)

where �k = 2� sin(k/2) and where the matrix elements of
Jk(t) are defined as

Jk(r, r̄ , t) = 2ir−r̄ Re
∑

h

e−ik(r−r̄ )/2
∫ t

0
dτC0h (τ )

× [G0,h(τ )G∗
0,r−r̄+h(τ ) − G0,r+h(τ )G∗

0,r̄+h(τ )]. (13)

The resulting GME (12) is isomorphic to the Schrödinger
equation for a single particle moving on a 1D lattice. It can
be expressed in a formal way since k(r, t) can be viewed as
the component of the vector |k(t)〉 in the site representation
{|r〉}. At time t = 0, the vibron creation on the site x0 = 0
yields |k(0)〉 = |0〉, ∀ k. The evolution of |k(t)〉 is thus
governed by a Schrödinger-like equation as

i|̇(t)〉 = Hk(t)|(t)〉 (14)

where the matrix elements of the effective Hamiltonian Hk(t)
are defined as

Hk(r, r̄ , t) = �k(δr,r̄+1 + δr,r̄−1) − iJk(r, r̄ , t). (15)

3.2. Diffusion coefficient: general expression

The formal expression of the time-dependent diffusion
coefficient (6) can be extracted from the GME (14) without
explicitly solving this master equation. To proceed, the starting
point is to express the vibron mean square displacement as
(see (11))

〈x2(t)〉 = −
(

∂2〈0|k(t)〉
∂k2

)

k=0

. (16)

Then, let Uk(t) denote the evolution operator associated with
the Schrödinger-like equation (14). It connects the vector
|k(t)〉 to its initial value, i.e. |k(t)〉 = Uk(t)|0〉, and it
satisfies Uk(0) = 1. Its time evolution is governed by the
equation iU̇k(t) = Hk(t)Uk(t). Therefore, it is straightforward
to show that D(t) involves the second derivative with respect

4
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to k of 〈0|Hk(t)Uk(t)|0〉. Since (13) yields Jk(0, r̄ , t) =
0, ∀ r̄ , 〈0|Hk(t) only involves the time-independent part of
Hk(t) (15). As a result, after simple algebraic manipulations,
D(t) is finally expressed as

D(t) = i�
∑

r=±1

(
∂〈r |Uk(t)|0〉

∂k

)

k=0

. (17)

Equation (17) reveals that the time evolution of D(t) is
governed by the long-wavelength behavior of the evolution
operator. This behavior can be extracted from (14) by applying
a standard perturbation theory in which k is assumed to be
a small parameter. To proceed, the effective Hamiltonian is
expanded as

Hk(t) = H0(t) + kH′
0(t) + k2

2
H′′

0(t) + · · · (18)

where the prime denotes a derivative with respect to k and
where the index 0 means that the operators are evaluated for
k = 0. From (18), the expansion of Uk(t) in a power series
with respect to k can be easily reached and one finally obtains

D(t) = �
∑

r=±1

∫ t1

0
dt1〈r |G(t, t1)H′

0(t1)G(t1, 0)|0〉 (19)

where G(t1, t2) = U0(t1)U−1
0 (t2) is expressed in terms of

the unperturbed evolution operator U0(t) connected to H0(t),
i.e. U̇0(t) = −J0(t)U0(t).

From (15), H′
0(t) exhibits two contributions. The

first contribution is proportional to � whereas the second
contribution involves J ′

0(t). As a consequence, the diffusion
coefficient is expressed as the sum of two terms, i.e. D(t) =
DB(t) + DC(t). The coefficient DB(t), proportional to �2,
defines the band diffusion coefficient which basically accounts
for dephasing-limited band motion. By contrast, DC(t) is the
cross-diffusion coefficient proportional to both � and J ′

0(t).
These two terms are thus defined as

DB(t) =
∑

r=±1

∑

r1r2

∫ t1

0
dt1 �2δ|r1−r2|,1Grr1 (t, t1)Gr20(t1, 0)

DC(t) = −i
∑

r=±1

∑

r1r2

∫ t1

0
dt1 �J ′

0(r1, r2, t1)

× Grr1 (t, t1)Gr20(t1, 0)

(20)

where Gr1r2(t1, t2) = 〈r1|G(t1, t2)|r2〉.
Although (20) provides a general definition of D(t), its

numerical evaluation represents a hard task mainly due to the
complex nature of the relaxation operator. However, in the non-
adiabatic limit, J (t) can be expressed in an improved way,
making the calculation of D(t) easier.

3.3. Diffusion coefficient: approximated expression

The time derivative of J (t) measures the system memory
at time t of a vibron–phonon interaction occurring at time
t = 0. As detailed in [2, 3], the creation of a vibron on a
site x = 0 yields a contraction of the H bonds surrounding
the excited site. The memory of this interaction involves two

contributions. First, the lattice memory at time t and on site
x of the initial deformation is measured by the correlation
function C0x(t). Then, the free propagation of the vibron
from the excited site involves the product between an advanced
and a retarded free propagator. For a fixed x value, C0x(t)
behaves as a bell-shaped peak centered around the phonon
propagation time tx = 2|x |/�c and whose width is about
the phonon correlation time τc = 2/�c (see section 4). In a
lattice of H-bonded peptide units, the phonons propagate faster
than the vibron and τc is very short when compared with the
time required for a vibron to move. Consequently, the main
contribution of the relaxation operator (13) involves terms in
which an advanced vibron propagator exactly compensates
the associated retarded propagator. As a consequence, our
numerical study has revealed that J0(t) is mainly diagonal and
it reduces to

J0(r, r̄ , t) ≈ δrr̄ (	0(t) − 	r (t)) (21)

where 	r (t) is defined as

	r (t) = 2 Re
∑

h

∫ t

0
dt1 C0h(t1)|G0,r−h(t1)|2. (22)

In other words, J0(t) only depends on the parameter 	∗
r (t) =

	0(t) − 	r (t) which defines the TCL expression of the so-
called pure dephasing constant.

Indeed, due to dipole–dipole coupling, the vibron
delocalizes along the lattice. Its eigenstates correspond to
extended states written as a superimposition of local states
|x〉. Therefore, 	∗

r (t) describes the decay of the coherence
between two states |x1〉 and |x2 = x1 + r〉 mediated by the
phonons. This decay results from the random fluctuations of
the energy difference �Hx2x2 (t)−�Hx1x1 (t). According to the
stochastic theory of dephasing (see, for instance, [37]), 	̇∗

r (t)
is defined in terms of the correlation function of this energy
difference, i.e. 	̇∗

r (t) = 2 Re(C00(t) − C0r (t)) in a lattice
with translational invariance. It thus involves the difference
between the autocorrelation function of each site energy and
the cross-correlation function between the two site energies.
Nevertheless, as shown in (22), the stochastic approach must
be generalized to account for the ability of the vibron to
propagate. The correlation functions between site energies
are thus modulated by the vibron propagator. Consequently,
	̇0(t) and 	̇r (t) generalize the concept of autocorrelation
function and cross-correlation function between site energies,
respectively.

The diagonal nature of J0(t) provides an improved
expression of D(t). Indeed, the unperturbed evolution operator
U0(t) is also diagonal and its matrix elements are written as
U0(r, r̄ , t) ≈ δrr̄ exp(−φr (t)). The function φr (t) is the time
integral of the dephasing constant as

φr (t) =
∫ t

0
dt1 	∗

r (t1). (23)

Consequently, the knowledge of U0(t) yields G(t) so that the
two contributions of the diffusion coefficient (20) are finally
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Figure 1. Time evolution of K (x, t) at T = 310 K for (a) x = 0 and (b) x = 5 and for δ = 0 nN Å
−2

(full line), δ = 5 nN Å
−2

(long dashed
line), δ = 10 nN Å

−2
(medium dashed line) and δ = 15 nN Å

−2
(short dashed line).

written as

DB(t) = 2�2e−φ1(t)
∫ t

0
dt1 eφ1(t1)

DC(t) = 2�2e−φ1(t)
∫ t

0
dt1 eφ1(t1)η(t1)

(24)

where η(t), defined in terms of J ′
0(t), is expressed as

η(t) = 2

�
Im

∫ t

0
dt1

∑

h

C0h(t1)G0,h(t1)G∗
0,h+1(t1). (25)

Equation (24) is the main result of the present study. It
provides a rather simple definition of the diffusion coefficient
whose time evolution gives key information about the way the
vibron–phonon interaction modifies the quantum propagation
of the vibron. Note that the evaluation of (24) needs the
knowledge of Cx1 x2 (t) whose expression is given in the
appendix.

4. Numerical results

In this section, the previous formalism is applied to evaluate
the time-dependent diffusion coefficient that characterizes the
motion of a vibron along a lattice of H-bonded peptide units.
To proceed, typical values for the parameters are used: ω0 =
1660 cm−1, � = 7.8 cm−1, W = 15 N m−1 and M =
1.8 × 10−25 kg. The vibron–phonon coupling strength is fixed
to χ = −8 pN whereas the cubic anharmonicity δ is considered
as a free parameter. In that case, one obtains �c = 96.86 cm−1,
τc = 0.11 ps and EB = 0.21 cm−1 so that the non-adiabatic
weak coupling limit is reached.

At biological temperatures (T = 310 K), the time
evolution of K (x, t) = Re C0x(t) is illustrated in figure 1.
For harmonic phonons, K (0, t) behaves as a peak centered on
t = 0 and whose amplitude is 92.94 cm−2 (figure 1(a)). It
rapidly decays over a timescale of about 0.12 ps (i.e. about
τc) by exhibiting damped oscillations. For x �= 0, K (x, t) is
equal to zero until the time reaches the phonon propagation
time tx = xτc. At that time, K (x, t) shows a peak whose
amplitude is about K (0, 0)/2 and whose width is about 2τc.
Then, K (x, t) tends to zero by still exhibiting small amplitude
damped oscillations (figure 1(b)). When δ is turned on, a

Figure 2. Kmax(x) versus x at T = 310 K and for δ = 0 nN Å
−2

(full circles), δ = 5 nN Å
−2

(open circles), δ = 10 nN Å
−2

(full

squares) and δ = 15 nN Å
−2

(open squares).

different behavior takes place. As δ increases, the width of
K (0, t) decreases whereas its amplitude is not modified. For
instance, the width varies between 0.11 ps for δ = 5 nN Å

−2

and 0.04 ps for δ = 15 nN Å
−2

(figure 1(a)). Moreover, the
anharmonicity prevents the occurrence of damped oscillations
so that K (0, t) rapidly vanishes. For x �= 0, the main peak
of K (x, t) takes place for a time slightly smaller than tx .
Although the anharmonicity does not significantly affect the
width of the peak, it is responsible for a strong decay of its
amplitude. This amplitude is equal to 17.71 and 0.05 cm−2 for
δ = 5 and 15 nN Å

−2
, respectively (figure 1(b)).

The influence of the phonon anharmonicity on the
maximum value Kmax(x) of K (x, t) is displayed in figure 2.
When δ = 0, Kmax(x) shows a slowly varying algebraic decay
provided that x > 0. In the same time, we have verified that
the damped oscillations which occur after the main peak take
place over a timescale which increases with x . This feature
counterbalances the algebraic decay of the peak amplitude so
that the time integral of each correlation function is finally x-
independent. For anharmonic phonons, the peak amplitude
exhibits an exponential decay. The correlations take place over
a finite length scale defined as the correlation length ξ which
ranges between 5.06 and 0.65 when δ varies between 5 and
15 nN Å

−2
. Note that the localized nature of the correlation

functions induces an exponential decay of the corresponding
integrated correlations.
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Figure 3. Time evolution of 	r (t) at T = 310 and for (a) δ = 0 nN Å
−2

and (b) δ = 10 nN Å
−2

.

Figure 4. Time evolution of 	∗
r (t) at T = 310 K and for (a) δ = 0 nN Å

−2
and (b) δ = 10 nN Å

−2
.

The time evolution of 	r (t) at T = 310 K is shown in
figure 3. When δ = 0 (figure 3(a)), 	r (t) is initially equal to
zero over a timescale which increases with r . Then, it rapidly
increases to finally show small-amplitude damped oscillations
around an r -independent value 	r (∞) ≈ 4.03 cm−1. The time
for which 	r (t) reaches 	r (∞)/2 scales as 0.11r ps indicating
that phonons with sound velocity carry correlations between
site energies. These results are qualitatively temperature-
independent. Nevertheless, from a quantitative point of
view, 	r (∞) increases linearly with temperature over the
range 100–310 K. For anharmonic phonons (figure 3(b)), a
different behavior takes place and three main features emerge.
First, 	r (t) reaches a permanent regime after a timescale
slightly shorter than tr . Then, the anharmonicity prevents the
occurrence of damped oscillations. Finally, in the permanent
regime, 	r (∞) exhibits a strong r dependence. For small
δ values, 	r (∞) decreases almost linearly with r whereas
an exponential decay occurs for larger δ values. For δ =
5 nN Å

−2
, 	r (∞) is equal to 3.70 and 1.71 cm−1 for r = 0 and

5, respectively, whereas for δ = 10 nN Å
−2

, it varies between
2.87 cm−1 for r = 0 and 0.17 cm−1 for r = 5.

In figure 4, the time evolution of the dephasing constant
	∗

r (t) is shown at T = 310 K. For harmonic phonons
(figure 4(a)), the time dependence of 	∗

r (t) is qualitatively
independent on both r and T . Note that 	∗

r=0(t) = 0
since incoherent hops are forbidden. Initially equal to zero,
	∗

r (t) rapidly increases to reach a maximum value which

indicates that dephasing takes place in the short time limit.
Then, 	∗

r (t) decreases so that a rephasing mechanism occurs.
It finally converges to zero by exhibiting small-amplitude
damped oscillations. From t = 0, 	∗

r (t) reaches half of
its maximum value at t = 0.054 ps (i.e. about τc/2) ∀ r .
By contrast, the maximum value of 	∗

r (t) increases with r .
Similarly, during its decay, the time for which 	∗

r (t) reaches
half of its maximum value increases with r . It scales as 0.10r
ps, revealing that phonon propagation is at the origin of this
dephasing–rephasing process. Consequently, the coherence
between two states |x〉 and |x + r〉 is finally restored after
a timescale of about tr . When δ is turned on (figure 4(b)),
	∗

r=0(t) still vanishes. Therefore, for r > 0, 	∗
r (t) rapidly

increases in the short time limit. It reaches a maximum value
whose amplitude increases with r but decreases with δ. As
previously, in the short time limit, 	∗

r (t) reaches half of its
maximum value after a time almost r -independent. Then,
	∗

r (t) decreases to finally converge to a non-vanishing constant
value 	∗

r (∞). The permanent regime is reached after a time
which still increases linearly with r . Note that the damped
oscillations tend to disappear when δ is turned on. These
features show that the anharmonicity prevents the occurrence
of a complete rephasing so that the coherence between two
states |x〉 and |x + r〉 finally decays according to the rate
	∗

r (∞).
In figure 5, special attention is paid to characterize the

key parameters 	∗
1 (t) and η(t) which enter the definition of

7
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Figure 5. Time evolution of (a) 	∗
1 (t) and (b) η(t) for T = 310 K and for δ = 0 nN Å

−2
(full line), δ = 5 nN Å

−2
(long dashed line),

δ = 10 nN Å
−2

(medium dashed line) and δ = 15 nN Å
−2

(short dashed line).

Figure 6. (a) 	∗
1 (∞) versus T for δ = 5 nN Å

−2
(full line), δ = 10 nN Å

−2
(long dashed line), δ = 15 nN Å

−2
(medium dashed line) and

δ = 20 nN Å
−2

(short dashed line). (b) η(∞) versus T for δ = 0 nN Å
−2

(full line), δ = 5 nN Å
−2

(long dashed line), δ = 10 nN Å
−2

(medium dashed line) and δ = 15 nN Å
−2

(short dashed line).

the diffusion coefficient. As shown in figure 5(a), 	∗
1 (t)

first increases to reach a maximum value whose amplitude
decreases with δ from 1.37 cm−1 for δ = 0 to 0.82 cm−1 for
δ = 15 nN Å

−2
. This maximum takes place for a time of

about 0.12 ps ∀ δ. Then 	∗
1 (t) decreases to finally converge to

a constant value 	∗
1 (∞). For the parameters used in figure 5(a),

	∗
1 (∞) increases with δ and it is successively equal to 0, 0.3,

0.70 and 0.74 cm−1 for δ = 0, 5, 10 and 15 nN Å
−2

. However,
for larger δ values, we have observed that 	∗

1 (∞) tends to
decay with δ (not drawn in figure 5(a)). For harmonic phonons,
η(t) rapidly increases from zero to reach a maximum value
after typically 0.12 ps (figure 5(b)). Then, it decreases to
finally converge to η(∞) ≈ −0.043 by exhibiting damped
oscillations. When δ is turned on, η(t) basically behaves as
previously. Nevertheless, the oscillations tend to disappear and
the permanent value η(∞) increases with δ. Still negative for
small δ values (η(∞) = −3 × 10−2 for δ = 5 nN Å

−2
), it

becomes positive for large δ values (η(∞) = 2 × 10−3 for
δ = 15 nN Å

−2
).

The temperature dependence of 	∗
1 (∞) is illustrated in

figure 6(a). The dephasing constant tends to zero as the
temperature vanishes and it increases with T over the range
0–310 K. Nevertheless, its behavior depends on both T and
δ. Over the range 0–100 K, 	∗

1 (∞) typically scales as

T β . The exponent β is greater than unity whatever the δ

values considered in figure 6(a). It tends to 2 in the weak
anharmonicity limit and it reaches 1.84 and 1.20 when δ = 5
and δ = 10 nN Å

−2
, respectively. Over the range 200–

310 K, 	∗
1 (∞) still behaves as T β . However, two regimes

occurs depending on the δ values. For small δ values, β is
still greater than unity and it reduces to 1.83 and 1.41 for
δ = 5 and 10 nN Å

−2
, respectively. By contrast, for larger

δ values, β becomes smaller than unity, indicating a slowdown
in the increase of the dephasing constant with temperature. For
instance, β reduces to 0.52 for δ = 20 nN Å

−2
.

Figure 6(b) displays the temperature dependence of the
parameter η(∞). At very low temperatures, η(∞) = −4.2 ×
10−3 is independent of δ. By contrast, at higher temperatures,
two regimes occur. For harmonic phonons, η(∞) decreases
linearly with T . By contrast, when δ is turned on, a slowdown
in its decrease is observed for δ = 5 nN Å

−2
. For larger δ

values, η(∞) decreases with T until it reaches a minimum
value to finally increase with T . This behavior is enhanced
by the anharmonicity and η(∞) becomes positive for δ =
15 nN Å

−2
at T = 310 K.

The time evolution of both the band diffusion coefficient
and the cross-diffusion coefficient is illustrated in figure 7.

8
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Figure 7. Time evolution of (a) DB(t) and (b) DC(t) for T = 310 K and for δ = 0 nN Å
−2

(full line), δ = 2.5 nN Å
−2

(long dashed line),
δ = 5 nN Å

−2
(medium dashed line) and δ = 10 nN Å

−2
(short dashed line).

For harmonic phonons, DB(t) increases linearly with respect
to time. Such a behavior is temperature-independent and it
occurs even in the short time limit. In fact, the numerical
calculations reveal that DB(t) ≈ 2�2t . By contrast, DC(t)
almost vanishes over a timescale of about 0.25 ps, i.e. about
2τc (not distinguishable in figure 7). Then, it becomes
negative and it decreases linearly with time. The higher the
temperature is, the faster is its decay. Nevertheless, figure 7
shows that DC(t) represents a very small correction when
compared with DB(t). Consequently, after a timescale of
about 2τc, D(t) is proportional to time, indicating that the
vibron propagates coherently along the lattice in spite of its
coupling with the phonon bath. At biological temperatures, this
wavelike behavior results from a coherent motion according
to an effective hopping constant �̂ = 7.6 cm−1, i.e. slightly
smaller than the bare hopping constant � = 7.8 cm−1. Note
that the T dependence of DC(t) shows that �̂ is a slowly
decaying function of the temperature.

For anharmonic phonons, the behavior of the diffusion
coefficients strongly depends on δ over the timescale
considered in figure 7. Indeed, for δ = 2.5 nN Å

−2
, DB(t)

still increases with time but according to a law which increases
slower than the linear law observed in the harmonic situation.
Such a behavior has been fitted by the following power law:
DB(t) ∝ t0.85. In the same way, after about 2τc, DC(t)
decreases with time and its behavior is well represented by the
power law DC(t) ∝ −t0.87. The similarity between the two
exponents shows that both DB(t) and DC(t) are governed by
the same physics so that D(t) scales as tλ, with λ ≈ 0.86 ± 1.
In other words, the motion of the vibron is neither coherent
nor incoherent but a mixing between the two regimes takes
place over the timescale represented in figure 7. For larger δ

values, the slowdown of both the increase of DB(t) and the
decrease of DC(t) is enhanced. Therefore, for δ = 10 nN Å

−2
,

the two diffusion coefficients converge to a constant value in
the long time limit, i.e. typically for t > 10 ps. The band
diffusion coefficient tends to DB(∞) = 171.48 cm−1 whereas
DC(∞) = −1.37 cm−1. An incoherent regime occurs and
the vibron diffuses along the lattice according to the diffusion
coefficient D(∞) = 170.11 cm−1. When δ = 15 nN Å

−2

a similar behavior occurs although DC(∞) now tends to a

Figure 8. α versus δ on the temperature range 200–310 K.

positive value equal to 0.32 cm−1. However, this value is
negligible when compared with DB(∞) = 166.66 cm−1 which
still dominates the full diffusion coefficient (not drawn in
figure 7).

Long time simulations have been carried out to extract the
temperature dependence of the incoherent diffusion coefficient
D(∞) in the high temperature limit, i.e. over the range 200–
310 K. In a general way, D(∞) decreases with T and its
behavior is well represented by a power law D(∞) = C/T α .
As shown in figure 8, the value of the exponent α strongly
depends on δ and three different regimes occur. In the weak
anharmonicity limit, i.e. when δ < 5 nN Å

−2
, α is typically

about 2 so that D(∞) rapidly decreases with temperature
according to the power law D(∞) ∝ 1/T 2. In the intermediate
regime, i.e. when δ ∈ [5, 15] nN Å

−2
, the exponent α decreases

almost linearly with δ. It ranges between 1 and 2 indicating
a slowdown in the decay of D(∞) with the temperature.
Note that D(∞) ∝ 1/T when δ = 13.82 nN Å

−2
. This

feature is enhanced in the strong anharmonicity limit, i.e. δ >

15 nN Å
−2

, where α becomes smaller than unity. The long time
diffusion coefficient is thus a slowly decaying function of the
temperature which becomes almost temperature-independent
in the very strong anharmonicity limit (α = 0.20 for δ =
27.5 nN Å

−2
).
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To conclude this section, let us evaluate the relevant
parameters for a spine of H-bonded peptide units involved in
an α-helix. To proceed, the H bond is modeled with a Lennard-
Jones potential [40] so that W and δ satisfy δ(nN Å

−2
) =

2.1W (N m−1)/r0(Å). The equilibrium distance of the O · · · H
bond being about r0 = 1.92 Å [1], one obtains δ =
16.40 nN Å

−2
. At T = 310 K, the phonon decay rate is

γ = 82.55 cm−1 and the dephasing constant reaches 	∗
1 (∞) =

0.70 cm−1. The dephasing time is equal to T2 = 7.5 ps and
the diffusion coefficient is D(∞) = 172.54 cm−1, i.e. about
9.48×10−2 cm2 s−1 with a lattice parameter equal to 5.4 Å. In
the high temperature limit, D(∞) typically scales as 1/T 0.78.

5. Discussion

The numerical results have revealed that the vibronic transport
strongly depends on the nature of the phonons. For harmonic
phonons, it has been shown that the vibron–phonon interaction
yields a dephasing–rephasing mechanism in the short time
limit which prevents the occurrence of the vibron diffusivity.
The vibron propagates freely along the lattice as if it was
insensitive to the bath. Keeping its wavelike nature, it induces
a coherent vibrational energy flow characterized by a diffusion
coefficient which increases linearly with time. By contrast,
when the anharmonicity is turned on, the rephasing process
no longer compensates the dephasing mechanism. After
a transient regime, the bath tends to destroy the coherent
behavior of the vibron. Dephasing-limited band motion takes
place, resulting in a transition between a coherent motion in
the short time limit and an incoherent motion in the long time
limit. The vibrational energy flow is finally mediated according
to an incoherent diffusion mechanism. The corresponding
diffusion coefficient typically scales as 1/T 2 in the weak
anharmonicity limit whereas it becomes a slowly decaying
function of temperature in the strong anharmonicity limit.

As shown in section 3, the influence of the phonons on
the vibron dynamics is defined in terms of the vibron–phonon
coupling correlation function. Depending on whether the
phonons are harmonic or not, this function behaves differently
resulting in a vibron dynamics either coherent or incoherent.
To understand this feature, special attention is first paid to
characterize Cx1 x2 (t) by using the so-called Debye model.

5.1. Vibron–phonon coupling correlation function

Within the Debye model, the phonon dispersion curve is
linearized so that �q ≈ c|q|, where c = �c/2 is the sound
velocity. Therefore, by inserting this expression into (A.6) at
high temperature, one obtains

K (x, t) = EBkBT e−γ t [ f (x − ct) + f (x + ct)]
S(x, t) = −(2kBT )−1 K̇ (x, t)

(26)

where f (z), defined in terms of sine cardinal functions, can
be approximated by the rectangular function f (z) = 1 for
z ∈ [−1, 1] and zero otherwise. Therefore, K (x, t) reduces

to

K (x, t) =
{

(1 + δx0)EBkBT e−γ t if t ∈ [tx−1, tx+1]
0 otherwise

(27)
where tx = xτc is the phonon propagation time.

Equation (27) captures the main part of the physics
involved in the correlation function at biological temperatures.
Indeed, for x = 0, it defines a peak centered on t = 0 and
whose amplitude is equal to 2EBkBT . For the parameters
used in the simulation, this amplitude, equal to 92.55 cm−2,
is almost equal to the numerical value (figure 1). The width
of this peak is equal to τc for harmonic phonons whereas
it reduces to 1/γ when δ is turned on. Since γ scales as
δ2 (see (A.4)), the width decreases with δ as observed in
figure 1. For non-vanishing x values and for δ = 0, the peak
amplitude is EBkBT and its width is equal to 2τc. Note that (27)
describes neither the algebraic decay of the peak amplitude
nor the occurrence of damped oscillations since both features
originate from the dispersive nature of the phonons which
has been neglected within the Debye model. Nevertheless,
the Debye model yields integrated correlations in rather good
agreement with the numerical calculations. For anharmonic
phonons (27) shows that the peak amplitude decreases with
the distance according to the exponential law Kmax(x) =
EBkBT exp(−x/ξ), where ξ = �c/2γ defines the correlation
length (x > 0). At biological temperatures, ξ varies between
6.31 and 0.65 when δ ranges between 5 and 15 nN Å

−2
, in

relatively good agreement with the numerical values (figure 2).
In other words, for independent phonons, the bath exhibits

spatial correlations over an infinite length scale. By contrast,
the phonon–phonon interaction induces a finite lifetime T1 ≈
1/γ for each phonon mode. As a result, spatial correlations
occur over a length scale ξ = cT1 defined as the distance
covered by the phonons during their lifetime.

5.2. Integrated correlation functions

To understand the way spatial correlations in the bath affect
the vibron dynamics, let us evaluate the integrated correlation
functions 	r (t). Within the non-adiabatic limit, the main
contribution of 	r (t) involves the term that characterizes a
coincidence between the vibron propagator and the coupling
correlation function. Therefore, from (22), 	r (t) reduces to

	r (t) ≈ 2
∫ t

0
dt1 K (r, t1). (28)

Equation (28) reveals that 	̇r (t) is two times the real part of
the correlation function between two site energies separated
by the distance r . It measures the lattice memory at time t
and on site r of an initial H-bond contraction induced by the
vibron–phonon interaction on site r = 0. Therefore, for r = 0,
inserting (27) into (28) for harmonic phonons yields 	0(t) in
terms of 	 = 8EBkBT/�c (see section 2.2) as

	0(t) ≈ 	

{
t/τc if t � τc

1 if t > τc.
(29)
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For r > 0, 	r (t) vanishes for t < tr−1 and it satisfies

	r (t) ≈ 	

{
[t/τc − (r − 1)]/2 if t ∈ [tr−1, tr+1]
1 if t > tr+1.

(30)
For r = 0, the lattice memory of the initial interaction

takes a significant value at time t = 0. Then it vanishes
for t > τc, indicating that the phonons have left the excited
region. Consequently, 	0(t) first increases to finally converge
to a constant value 	0(∞) = 	 (see figure 3). At biological
temperatures, one obtains 	 = 3.82 cm−1. The small
discrepancy with the numerical value equal to 4.03 cm−1

originates from the validity of the non-adiabatic limit. It tends
to disappear when �/�c is reduced. For r �= 0, no memory
occurs until time reaches tr−1 which represents the time needs
for the phonons to cover r − 1 sites. Then, the correlation
switches on, provided that t ∈ [tr−1, tr+1], i.e. when the
phonons are located around the site r . Finally, the memory
vanishes for t > tr+1, indicating that the phonons propagate
far from the site r . Consequently, 	r (t) turns on when t > tr−1

to finally converge to a constant value 	r (∞) = 	 when
t > tr+1. Since the bath exhibits spatial correlations over an
infinite length scale, 	r (∞) is r -independent as observed in
figure 3.

When δ �= 0, by inserting (27) into (28) for r = 0, one
obtains

	0(t) ≈ 	

γ τc

{
1 − e−γ t if t � τc

1 − e−γ τc if t > τc.
(31)

Similarly for r > 0, 	r (t) vanishes for t < tr−1 and it is
defined as

	r (t) ≈ 	

2γ τc

{
e−γ tr−1 − e−γ t if t ∈ [tr−1, tr+1]
e−γ tr−1 − e−γ tr+1 if t > tr+1.

(32)
For anharmonic phonons, the physics that defines the lattice
memory is the same as the physics involved in the harmonic
situation. However, the γ dependence of 	r (t) results from the
competition between the ability of the phonons to propagate
and their finite lifetime. Indeed, for r = 0, (31) leads to
	̇0(t) = 4EBkBT exp(−γ t) for t < τc. This expression
indicates that the lattice memory of the initial vibron–phonon
coupling is modulated by the probability to observe the excited
phonons before their annihilation due to phonon–phonon
interactions. Consequently, the lattice memory decays with
time in an exponential way. It finally vanishes when the
phonons have left the excited site, i.e. when t > τc. Therefore
	0(t) converges to a constant value whose amplitude decreases
with γ . For r > 0, the behavior of 	r (t) originates from the
r dependence of the probability that phonons cover (r − 1)

sites before being annihilated. Since spatial correlations now
occur over a finite length scale, the larger the distance r is,
the smaller is the probability. As a result, 	r (t) switches
on when t > tr−1. It converges to a constant value 	r (∞)

which decays with distance according to an exponential law
exp(−r/ξ). For instance, for δ = 5 nN Å

−2
, 	r (∞) is equal

to 3.53 and 1.74 cm−1 for r = 0 and 5, respectively, whereas

for δ = 10 nN Å
−2

, it varies between 2.83 cm−1 for r = 0 and
0.17 cm−1 for r = 5, in close agreement with the numerical
results.

The knowledge of 	r (t) yields analytical expressions for
	∗

r (t). We have verified that the Debye model provides results
in rather good agreement with our numerical observations
(figures 4 and 5). Nevertheless, to simplify the discussion,
special attention will be paid to study 	∗

1 (t) only, since it enters
the definition of the diffusion coefficient. We thus successively
consider the harmonic and anharmonic situations.

5.3. Transport properties for a vibron coupled with harmonic
phonons

The dephasing constant 	∗
1 (t) describes the influence of the

bath on the coherence between neighboring vibron local states.
Within the non-adiabatic limit, it reduces to

	∗
1 (t) ≈ 2

∫ t

0
dt1 [K (0, t1) − K (1, t1)]. (33)

We thus recover the standard definition of the dephasing
constant whose time derivative is the real part of the correlation
function of the energy difference �Hxx(t) − �Hx±1x±1(t).
It thus involves the difference between the autocorrelation
function of each site energy (i.e. 	̇0(t)) and the cross-
correlation function between the two neighboring site energies
(i.e. 	̇1(t)).

For harmonic phonons, by using (29) and (30), one obtains

	∗
1 (t) ≈ 	

2τc

⎧
⎪⎨

⎪⎩

t if 0 < t < τc

2τc − t if τc < t < 2τc

0 if t > 2τc.

(34)

The time evolution of 	∗
1 (t) can be interpreted as follows.

Initially on a site x , the vibron interacts with the phonons. A
lattice deformation occurs and it induces a local variation of
the vibron energy. It yields random fluctuations of the phase
difference between the weight of the states |x〉 and |x ± 1〉
over which the vibron tends to delocalize. The fluctuations
break the coherent nature of this superimposition, giving rise
to a dephasing mechanism. This quantum decoherence is
described by 	∗

1 (t) which increases with time provided that
t < τc. However, when t � τc, the initial deformation
reaches the sites x ± 1. Consequently, correlations between
neighboring sites switch on so that the phase relation between
the local states involved in the superimposition is restored. The
coherent nature of the superimposition recurs, resulting in the
occurrence of the rephasing mechanism. The corresponding
dephasing constant thus decreases with time. Finally, for
t > 2τc, the lattice deformation has left the excited
region and 	∗

1 (t) finally vanishes. This scenario, together
with (34), provides a physical interpretation of the numerical
observations displayed in figures 4 and 5.

The dephasing–rephasing mechanism yields a time-
resolved picture of the influence of the vibron–phonon
interaction in momentum space. Indeed, the vibron eigenstates
refer to a Bloch wave with wavevector K and eigenfrequency
ωK (see section 2.1) so that dephasing in real space
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characterizes lifetime in momentum space. Therefore, to
second order with respect to �H , this lifetime originates from
the scattering of a vibron with wavevector K into an eigenstate
with wavevector K ± q via the exchange of a phonon with
wavevector q . Such a process occurs if energy conservation
takes place, i.e. if ωK±q = ωK ± �q . However, in the non-
adiabatic limit, i.e. provided that 4� < �c, the energy cannot
be conserved so that the emission or the absorption of a phonon
does not correspond to a real process. Consequently, the
vibron is only able to exchange a virtual phonon which is first
emitted and then immediately reabsorbed, and vice versa. The
dephasing–rephasing mechanism is thus the counterpart in real
space of the virtual phonon emission–absorption mechanism in
momentum space.

The dressing of the vibron by virtual phonons induces
a renormalization of the vibron hopping constant. This
renormalization is described by the parameter η(t) involved in
the cross-diffusion coefficient (25). Within the non-adiabatic
limit, η(t) is expressed as

η(t) ≈ 2
∫ t

0
dt1 t1[K (0, t1) − K (1, t1)]. (35)

By using (29) and (30) for δ = 0, one obtains

η(t) ≈ 	

4τc

⎧
⎪⎨

⎪⎩

t2 if 0 < t < τc

2τ 2
c − t2 if τc < t < 2τc

−2τ 2
c if t > 2τc.

(36)

As observed in figure 5(b), η(t) first increases with time to
reach a maximum value. It then decreases to finally converge
to a negative value η(∞) = −8EBkBT/�2

c . Note that this
value, equal to −0.039 at T = 310 K, is close to the numerical
value −0.043.

In that context, after a time of about 2τc, the rephasing
process exactly compensates the initial dephasing. The
dephasing constant vanishes and η(t) converges to a constant
value η(∞). Therefore, (24) can be solved easily, leading to a
diffusion coefficient written as

D(t) ≈ 2�2(1 + η(∞))t . (37)

Since the dephasing–rephasing mechanism occurs over a
timescale shorter than the time required for the vibron to
move, it was as if the vibron was insensitive to the phonon
bath. As a result, the vibron keeps its wavelike nature and
a coherent energy transfer takes place along the lattice. The
corresponding time-dependent diffusion coefficient increases
linearly with time, as observed in figure 7, so that the vibron
mean square displacement scales as t2. This coherent motion
is characterized by the effective hopping constant �̂ =
�

√
1 + η(∞) approximately given by

�̂ ≈ �

(
1 − 4EBkBT

�2
c

)
. (38)

Equation (38) shows that �̂ is the weak coupling limit of
the effective hopping constant that arises in the small polaron
approach at high temperature [2]. Equal to 7.64 cm−1 for

T = 310 K, it is almost identical to the value extracted from
figure 7.

Note that similar results have been obtained within the
frame of the generalized Fulton–Gouterman transformation
which diagonalizes the coupled exciton–phonon Hamiltonian
and yields an exact expression for the mean square
displacement [38, 39]. The authors showed that there is no
excitonic diffusivity under the assumed translational invariance
at zero temperature. Nevertheless, they claimed that, in
most theories of exciton transport, the phonon subsystem is
considered as a bath which causes the exciton propagation to
become diffusive. Our results clarify this point and reveal
that spatial correlations over an infinite length scale in the
bath prevent the diffusive motion to occur, even at finite
temperature. Nevertheless, this coherent regime emerges when
the non-adiabatic weak coupling limit is reached and when the
phonons describe independent excitations.

5.4. Transport properties for a vibron coupled with
anharmonic phonons

When the anharmonicity is turned on, a different situation takes
place. Indeed, by using (31) and (32), 	∗

1 (t) is approximated
as

	∗
1 (t) ≈ 	

2γ τc

⎧
⎪⎨

⎪⎩

1 − e−γ t if 0 < t < τc

1 − 2e−γ τc + e−γ t if τc < t < 2τc

(1 − e−γ τc)2 if t > 2τc.
(39)

The physics that defines the time evolution of 	∗
1 (t) is the

same as the physics involved in the harmonic case. In the
short time limit, a dephasing process takes place and the
coherence between neighboring vibron local states decays.
This decoherence originates from the random fluctuations
of the site energies induced by the lattice deformation that
emerges from the vibron–phonon interaction. The dephasing
constant thus increases, provided that t < τc. Then, a
rephasing occurs since correlations between neighboring sites
switch on due to the propagation of the lattice deformation.
The dephasing constant thus decreases when time ranges
between τc and 2τc. Finally, 	∗

1 (t) becomes time-independent
when t > 2τc since the phonons have left the excited region.

Nevertheless, the localized nature of the vibron–phonon
coupling correlation function prevents the rephasing process
to exactly compensate the dephasing process. The coherence
between neighboring vibron states cannot be restored so that an
irreversible quantum decoherence takes place. The dephasing
constant no longer vanishes in the long time limit but it
converges to a finite value defined as

	∗
1 (∞) = 2EBkBT

γ
(1 − e−γ τc )2. (40)

Equation (40) provides 	∗
1 (∞) values in a qualitatively good

agreement with our numerical data. For instance, at T =
310 K, 	∗

1 (∞) is equal to 0.26, 0.66 and 0.77 cm−1 for δ = 5,

10 and 15 nN Å
−2

, respectively (see figure 5(a)). Moreover,
it reveals that the origin of the temperature dependence of
	∗

1 (∞) is twofold. First, it results from the phonon population
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which is proportional to kBT at biological temperatures. Then,
it arises from the phonon decay rate γ which also increases
linearly with T according to equation (A.4). At biological
temperatures, both effects exactly compensate for each other so
that the dephasing constant behaves as 	∗

1 (∞) ∝ (1−e−T/T0 )2

with kBT0 = 2W 3/δ2. In the weak anharmonicity limit (γ τc �
1), T0 � T leading to 	∗

1 ∝ T 2. As δ increases, T0 decreases
and the exponential factor tends to disappear. A slowdown in
the increase of 	∗

1 (∞) with temperature occurs. Finally, in the
strong anharmonicity limit (γ τc � 1), T0 � T and 	∗

1 (∞)

becomes a slowly increasing function of the temperature (see
figure 6(a)).

Note that the incomplete dephasing–rephasing mechanism
shows that vibron scattering in momentum space becomes a
real process. Indeed, the phonon decay rate γ represents
the finite width of each phonon energy that arises from
the phonon–phonon interaction. Therefore, the scattering
of a vibron from a wavevector K to a wavevector K ±
q via phonon exchanges becomes possible since energy
conservation is required but with an uncertainty of about 2γ .
In other words, the phonon anharmonicity opens a relaxation
pathway in momentum space that was closed in the harmonic
situation. Each vibron eigenstate has a finite lifetime leading
to dephasing in real space.

In addition, the vibron–phonon interaction is still
responsible for a renormalization of the vibron hopping
constant. This effect is accounted for by η(t) whose time
evolution is easily obtained by inserting (31) and (32)
into (35). We have verified that the Debye model provides an
analytical expression of η(t) in rather good agreement with the
numerical results. In particular, η(t) first increases for t < τc

and then decreases for τc < t < 2τc. For t > 2τc, it finally
converges to

η(∞) = 	
(1 − e−γ τc )2 − 2γ τce−γ τc(1 − e−γ τc)

2γ 2τc
. (41)

In the weak anharmonicity limit, η(∞) ≈ −	τc/2 + 	γ τ 2
c .

It thus increases with δ and exhibits a parabolic dependence
on the temperature as shown in figure 6(b). In fact, the
anharmonicity favors the increase of η(∞) which becomes
positive provided that γ > 0.628�c. Nevertheless, η(∞)

remains a very small parameter indicating, as expected, that the
vibron hopping renormalization can be neglected in the weak
coupling limit.

Consequently, after a time of about 2τc, both 	∗
1 (t) and

η(t) converge to time-independent values and (24) leads to a
diffusion coefficient written as

D(t) ≈ 2�2(1 + η(∞))

	∗
1 (∞)

(1 − e−	∗
1 (∞)t). (42)

Whatever δ is, (42) provides a time evolution for D(t) in
perfect agreement with the results displayed in figure 7.
It shows that the vibrational energy flow results from the
competition between the ability of the vibron to delocalize
coherently and the coupling with anharmonic phonons
responsible for dephasing. Therefore, when the time is shorter
than the dephasing time T2 = 1/	∗

1 (∞), a coherent energy

transfer takes place. The vibron mean square displacement
scales as t2 and D(t) increases linearly according to time.
However, as time becomes longer than T2, the coupling with
the phonons induces random fluctuations which destroy the
coherent nature of the motion. The vibron quantum state
localizes and the vibron realizes random hops between local
states mediated by energy exchanges with the bath. This
incoherent motion favors the diffusion of the vibrational energy
flow so that the vibron mean square displacement scales as
〈x2(t)〉 ≈ 2D(∞)t . The incoherent diffusion coefficient is
thus defined as

D(∞) = 2�2(1 + η(∞))

	∗
1 (∞)

. (43)

Since η(∞) is a very small parameter, the behavior of D(∞)

is governed by 	∗
1 (∞). Consequently, as observed in figure 8,

D(∞) scales as 1/δ2T 2 in the weak anharmonicity limit and it
diverges when both δ and T tend to zero. As the anharmonicity
increases, a slowdown in the decay of D(∞) with temperature
takes place. Finally, in the strong anharmonicity limit, D(∞)

becomes almost temperature-independent. It scales as δ2,
which indicates that the anharmonicity enhances the diffusion.

To conclude this discussion, let us mention that the main
result of the present study is to point out the key role played
by the spatial correlations in the bath, whether the phonons are
harmonic or not. Indeed, in most of the previous works devoted
to exciton transport, the dephasing constant usually reduces
to 	∗

1 (∞) = 	0(∞). It involves the autocorrelation of the
site energy only and cross-correlations between neighboring
site energies are disregarded (see, for instance, the stochastic
transport theory [41] as well as the so-called γ1 contribution
of the Grover–Silbey model [19]). With acoustical harmonic
phonons, such approaches completely fail in reproducing
the vibron dynamics since they predict dephasing-limited
band motion whereas no dephasing occurs. Similarly, with
anharmonic phonons, they overestimate the dephasing constant
and finally yield the wrong results. For instance, at T = 310 K
and for δ = 10 nN Å

−2
, figure 3(b) shows that 	0(∞) =

2.87 cm−1 whereas 	1(∞) = 2.17 cm−1. Neglecting cross-
correlations gives rise to a dephasing time T2 = 1.84 ps
whereas our theory predicts T2 = 7.57 ps, i.e. about four times
longer. Note that even in the strong anharmonicity limit cross-
correlation functions cannot be neglected since (31) and (32)
reveal that 	0(∞) ≈ 2	1(∞). In other words, as previously
observed in the strong coupling limit [2], spatial correlations
in the phonon bath enhance the dephasing time and allow the
observation of the vibron wavelike behavior over a longer time.

6. Conclusion

In this paper, a Davydov model has been used to study
the influence of the phonon anharmonicity on the vibron
dynamics in a lattice of H-bonded peptide units. To proceed, a
TCL-GME for the vibron RDM has been established within
the non-adiabatic weak coupling limit. This equation has
been used to define the time-dependent diffusion coefficient
whose knowledge allows us to understand the way the vibron
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propagates along the lattice. It has been shown that the
vibron dynamics is governed by the dephasing constant that
characterizes how the phonon bath modifies the coherence
between neighboring vibron local states. It is defined in
terms of the difference between the autocorrelation function
of each site energy and the cross-correlation function between
neighboring site energies. The behavior of these correlation
functions strongly depends on the nature of the phonons and
two distinct mechanisms have been identified.

For harmonic phonons, the bath exhibits spatial correla-
tions over an infinite length scale. As a result, the vibron–
phonon interaction yields a dephasing–rephasing mechanism
in the short time limit which prevents the occurrence of the vi-
bron diffusivity. The vibron propagates freely along the lattice
as if it was insensitive to the phonon bath. Keeping its wave-
like nature, it induces a coherent vibrational energy flow char-
acterized by a time-dependent diffusion coefficient which in-
creases linearly with time. Note that the short time dephasing–
rephasing mechanism defines the counterpart in real space of
the virtual phonon emission–absorption mechanism in momen-
tum space which provides an infinite lifetime to each vibron
eigenstate.

By contrast, when the anharmonicity is turned on, the
phonon–phonon interaction induces a finite lifetime for each
phonon mode. Spatial correlations in the bath localize and
they occur over a length scale defined as the distance covered
by the acoustic wave during their lifetime. Consequently,
the rephasing process no longer compensates the dephasing
mechanism so that the vibron–phonon coupling tends to
destroy the coherent behavior of the vibron. In other words,
the phonon anharmonicity opens a relaxation pathway in
momentum space so that each vibron eigenstate has a finite
lifetime. Dephasing-limited band motion takes place, resulting
in a transition between a coherent motion in the short time
limit and an incoherent motion in the long time limit. The
vibrational energy flow finally diffuses and the corresponding
diffusion coefficient scales as 1/T 2 in the weak anharmonicity
limit whereas it becomes a slowly decaying function of the
temperature in the strong anharmonicity limit.

To conclude, let us mention that special attention will
be paid in forthcoming works to addressing two fundamental
questions. First, in the present study, a second-order
perturbation theory has been applied to treat the vibron–
phonon coupling. At this level of approximation, one-
phonon processes contribute to dephasing only when the
phonon anharmonicity is included. However, this is no
longer the case if high-order processes are taken into account
since multi-phonon processes induce dephasing even with
harmonic phonons. Consequently, it would be wise to
quantify the relevance of high-order processes depending on
both the vibron–phonon coupling strength and the phonon
anharmonicity. Then, a generalization of the present work
will be presented to characterize the vibrational energy flow
when two vibrons are excited. In that case, the intramolecular
anharmonicity of each amide-I mode acts as a nonlinear source
and it favors the occurrence of specific states called two-vibron
bound states [4, 42]. These states exhibit an experimental
signature within nonlinear pump–probe spectroscopy [43] and

they are expected to play a key role for energy storage in
proteins due to their formal resemblance to classical breathers.

Appendix. Vibron–phonon coupling correlation
function

To evaluate Cx1,x2 (t), we apply the single-mode relaxation-
time method in which one calculates the phonon mode q
lifetime by assuming that all the other modes form a bath in
thermal equilibrium [29]. To proceed, (3) is rewritten as

Hp =
∑

q

�qa†
qaq +

∑

q

Sq a†
q + S†

q aq (A.1)

where Sq is the coupling strength between the mode q and the
remaining phonons as

Sq =
∑

q1q2

∑

σ1σ2

λ(q, q1, q2)√
N

σ1σ2δq+σ1q1+σ2q2 aσ1
q1

aσ2
q2

. (A.2)

In (A.2), σi = ±1, a+1
q ≡ a†

q , a−1
q ≡ aq and δK is the periodic

Kronecker symbol in the space of the reciprocal lattice. The
term λ(q, q1, q2) is defined as

λ(q, q1, q2) = −4iδ

3h̄

(
h̄

2M

)3/2 sin(
q
2 ) sin(

q1

2 ) sin(
q2

2 )
√

�q�q1�q2

. (A.3)

Then, a projector method is used to evaluate the time
evolution of the phonon operator correlation functions. By
performing a second-order expansion with respect to Sq , it is
shown that the phonons still behave as independent bosons.
Nevertheless, it is as if each mode was characterized by a
complex eigenfrequency �q ± iγq , where γq is the so-called
phonon decay rate. The reduced dimensionality of the 1D
lattice provides particular properties. The decay rate is thus
q-independent, and its expression, whatever the temperature,
corresponds to its high temperature limit [26–28] as

γ = kBT

4

δ2

W 3
�c. (A.4)

In that context, from (4), Cx1,x2 (t) is finally written as

Cx1 x2 (t) = K (|x1 − x2|, t) − iS(|x1 − x2|, t) (A.5)

where K (x, t) and S(x, t) are defined as

K (x, t) = 2EB

N

∑

q

coth(�q/2kBT )�q

× cos2

(
q

2

)
cos(�qt − qx)e−iγ t

S(x, t) = 2EB

N

∑

q

�q cos2

(
q

2

)
sin(�qt − qx)e−iγ t .

(A.6)
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